

53.
$$f(x) = x \cos 2x$$
, $c = 0$

54.
$$f(x) = \sin \frac{x}{2} \ln(1 + x), \quad c = 0$$

55.
$$g(x) = \sqrt{x} \ln x$$
, $c = 1$

56.
$$h(x) = \sqrt[3]{x} \arctan x$$
, $c = 1$

57. Projectile Motion A projectile fired from the ground follows the trajectory given by

$$y = \left(\tan\theta - \frac{g}{k\nu_0\cos\theta}\right)x - \frac{g}{k^2}\ln\left(1 - \frac{kx}{\nu_0\cos\theta}\right)$$

where v_0 is the initial speed, θ is the angle of projection, g is the acceleration due to gravity, and k is the drag factor caused by air resistance. Using the power series representation

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots, \qquad -1 < x < 1$$

verify that the trajectory can be rewritten as

$$y = (\tan \theta)x + \frac{gx^2}{2\nu_0^2 \cos^2 \theta} + \frac{kgx^3}{3\nu_0^3 \cos^3 \theta} + \frac{k^2gx^4}{4\nu_0^4 \cos^4 \theta} + \dots$$

58. Projectile Motion Use the result of Exercise 57 to determine the series for the path of a projectile projected from ground level at an angle of $\theta = 60^{\circ}$ with an initial speed of $v_0 =$ 64 feet per second and a drag factor of $k = \frac{1}{16}$.

$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

a. Sketch a graph of the function.

- b. Use the alternative form of the definition of the derivative (Section 2.1) and L'Hôpital's Rule to show that f'(0) = 0. (By continuing this process, it can be shown that $f^{(n)}(0) = 0$ for n > 1.
- c. Using the result of part b, find the Maclaurin series for f. Does the series converge to f?

$$f(x) = \begin{cases} 0, & x < -\pi/2 \\ \cos x, & -\pi/2 \le x \le \pi/2. \\ 0, & x > \pi/2 \end{cases}$$

Does the Maclaurin series for this function converge to the function? Explain.

61. Find the Maclaurin series for $f(x) = xe^x$. Integrate this series term-by-term over the closed interval [0, 1], and show that

$$1 = \sum_{n=0}^{\infty} \frac{1}{(n+2)n!}.$$

- 62. Prove that $\lim_{n \to \infty} \frac{x^n}{n!} = 0$ for any real x.
- 63. Prove that e is irrational. (Hint: Assume that e = p/q is rational (p,q integers) and consider

$$c=1\div 1\div \frac{1}{2!}\div \cdots + \frac{1}{n!}\div \cdots .$$

REVIEW EXERCISES TO Charles B HAPTER 8 REVIEW +

In Exercises 1 and 2, find the general term of the sequence.

1.
$$1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \dots$$

2.
$$\frac{1}{2}$$
, $\frac{2}{5}$, $\frac{3}{10}$, $\frac{4}{17}$, ...

In Exercises 3-10, determine the convergence or divergence of the sequence with the given general terms. (b and c are positive real numbers.)

3.
$$a_n = \frac{n+1}{n^2}$$

4.
$$a_n = \frac{1}{\sqrt{n}}$$

5.
$$a_n = \frac{n^3}{n^2 + 1}$$
 6. $a_n = \frac{n}{\ln n}$

$$6. \ a_n = \frac{n}{\ln r}$$

7.
$$a_n = \sqrt{n+1} - \sqrt{n}$$
 8. $a_n = \left(1 + \frac{1}{2n}\right)^n$

$$8. \ a_n = \left(1 + \frac{1}{2n}\right)^n$$

9.
$$a_n = \frac{\sin \sqrt{n}}{\sqrt{n}}$$

10.
$$a_n = (b^n + c^n)^{1/n}$$

11. Compound Interest A deposit of \$5000 is made in an account that earns 8% interest compounded quarterly. The balance in the account after n quarters is

$$A_n = 5000 \left(1 + \frac{0.08}{4}\right)^n, \qquad n = 1, 2, 3, \dots$$

- a. Compute the first eight terms of this sequence.
- b. Find the balance in this account after 10 years by computing the 40th term of the sequence.
- 12. Depreciation A company buys a machine for \$120,000. During the next 5 years it will depreciate at the rate of 30% per year. (That is, at the end of each year the depreciated value is 70% of what it was at the beginning of the year.)
 - a. Find the formula for the nth term of a sequence that gives the value of the machine t full years after it was purchased.
 - b. Find the depreciated value of the machine at the end of full years.

In Exercises 13-16, find the first five terms of the sequence of partial sums for the series.

13.
$$\sum_{n=0}^{\infty} \left(\frac{3}{2}\right)^n$$

14.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n}$$

15.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n)!}$$

16.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

In Exercises 17-20, find the sum of the series.

17.
$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$

18.
$$\sum_{n=0}^{\infty} \frac{2^{n+2}}{3^n}$$

19.
$$\sum_{n=0}^{\infty} \left(\frac{1}{2^n} - \frac{1}{3^n} \right)$$

20.
$$\sum_{n=0}^{\infty} \left[\left(\frac{2}{3} \right)^n - \frac{1}{(n+1)(n+2)} \right]$$

In Exercises 21 and 22, express the repeating decimal as the ratio of two integers.

- 23. Bouncing Ball A ball is dropped from a height of 8 feet. Each time it drops h feet, it rebounds 0.7h feet. Find the total distance traveled by the ball.
- 24. Total Compensation Suppose you accept a job that pays a salary of \$32,000 the first year. During the next 39 years you receive a 5.5% raise each year. What would your total salary be over the 40-year period?
- 25. Compound Interest A deposit of \$200 is made at the end of each month for 2 years in an account that pays 6%, compounded continuously. What is the balance in the account at the end of the 2 years?
- 26. Compound Interest A deposit of \$100 is made at the end of each month for 10 years in an account that pays 6.5%, compounded monthly. What is the balance in the account at the end of the 10 years?

In Exercises 27-38, determine the convergence or divergence of the series.

27.
$$\sum_{n=1}^{\infty} \frac{2^n}{n^3}$$

28.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n^3}}$$

29.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 2n}}$$
 30. $\sum_{n=1}^{\infty} \frac{n+1}{n(n+2)}$

30.
$$\sum_{n=1}^{\infty} \frac{n+1}{n(n+2)}$$

31.
$$\sum_{n=1}^{\infty} \frac{n}{e^{n^2}}$$

32.
$$\sum_{n=1}^{\infty} \frac{n!}{e^n}$$

33.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{\ln n}$$

33.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{\ln n}$$
 34.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+1}$$

$$35. \sum_{n=1}^{\infty} \left(\frac{1}{n^2} - \frac{1}{n} \right)$$

$$36. \sum_{n=1}^{\infty} \left(\frac{1}{n^2} - \frac{1}{2^n} \right)$$

37.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \cdot \cdot \cdot \cdot (2n)(2n+1)}$$

38.
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 + (2n-1)}{2 \cdot 5 \cdot 8 \cdot (3n-1)}$$

39. Essay Use a computer to complete the table for b. p = 5Write a short paragraph describing and comparing the entries in the tables generated.

N	5	10	20	30	40
$\sum_{n=1}^{N} \frac{1}{n^p}$					241.
$\int_{N}^{\infty} \frac{1}{x^{p}} dx$					

40. Essay You are told that the terms of a positive series appear to approach 0 very slowly as $n \to \infty$. (In fact, $a_{75} = 0.7$.) If you are given no other information, can you conclude that the series diverges? Support your answer with examples.

In Exercises 41-46, find the interval of convergence of the power series.

41.
$$\sum_{n=0}^{\infty} \left(\frac{x}{10}\right)^n$$

42.
$$\sum_{n=0}^{\infty} (2x)^n$$

43.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (x-2)^n}{(n+1)^2}$$
 44.
$$\sum_{n=1}^{\infty} \frac{3^n (x-2)^n}{n}$$

44.
$$\sum_{n=1}^{\infty} \frac{3^n (x-2)^n}{n}$$

45.
$$\sum_{n=0}^{\infty} n!(x-2)^n$$
 46. $\sum_{n=0}^{\infty} \frac{(x-2)^n}{2^n}$

46.
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{2^n}$$

In Exercises 47-54, find the power series for the function centered at c.

47.
$$f(x) = \sin x$$
, $-c = \frac{3\pi}{4}$

47.
$$f(x) = \sin x$$
, $-c = \frac{3\pi}{4}$ 48. $f(x) = \cos x$, $-c = -\frac{\pi}{4}$

49.
$$f(x) = 3^x$$
, $c =$

49.
$$f(x) = 3^x$$
, $c = 0$ 50. $f(x) = \csc x$, $c = \frac{\pi}{2}$

51.
$$f(x) = \frac{1}{x}$$
, $c = -1$ 52. $f(x) = \sqrt{x}$, $c = 4$

52.
$$f(x) = \sqrt{x}$$
, $c = 4$

53.
$$g(x) = \frac{2}{3-x}$$
, $c = 0$

54.
$$h(x) = \frac{1}{(1+x)^3}, \quad c = 0$$

- 55. Determine the first four terms of the Maclaurin series for e^{2x}
 - a. by using the definition of the Maclaurin series and the formula for the coefficient of the *n*th term $a_n = f^{(n)}(0)/n!$.
 - b. by replacing x by 2x in the series for e^x .
 - c. by multiplying the series for e^x by itself because e^{2x} = $e^x \cdot e^x$.
- 56. Follow the pattern of Exercise 55 to find the first four terms of the series for $\sin 2x$. [Hint: $\sin 2x = 2 \sin x \cos x$.]

5.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (x-1)^{n+1}}{n+1}$$
 7.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n+1}}{(2n+1)!}$$

A76

7.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n+1}}{(2n+1)!}$$

9.
$$1 + \frac{x^2}{2!} + \frac{5x^4}{4!} + \cdots$$

11.
$$\sum_{n=0}^{\infty} (-1)^n (n+1) x^n$$

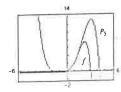
13.
$$\frac{1}{2} \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 3 \cdot 5 \cdots (2n-1)x^{2n}}{2^{3n} n!} \right]$$

15.
$$1 + \frac{x^2}{2} + \sum_{n=2}^{\infty} \frac{(-1)^{n+1} \cdot 3 \cdot 5 \cdot \cdots (2n-3) x^{2n}}{2^n n!}$$

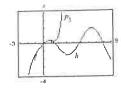
17.
$$1 + \frac{x^2}{2} + \frac{x^4}{2^2 2!} + \frac{x^6}{2^3 3!} + \cdots$$

19.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n+1}}{(2n+1)!}$$

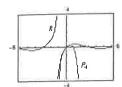
21.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{(2n)!}$$


23.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!}$$

25.
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$


17.
$$1 + \frac{x^2}{2} + \frac{x^4}{2^2 2!} + \frac{x^6}{2^3 3!} + \cdots$$
 19. $\sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n+1}}{(2n+1)!}$
21. $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{(2n)!}$ 23. $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!}$ 25. $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$
27. $\frac{1}{2} \left[1 + \sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n}}{(2n)!} \right]$ 29. $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$

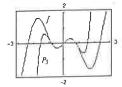
29.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$


31.
$$P_5(x) = x + x^2 + \frac{1}{3}x^3 - \frac{1}{30}x^5 + \cdots$$

33.
$$P_5(x) = x - \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{3}{40}x^5 + \cdots$$

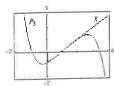
35.
$$P_4(x) = x - x^2 + \frac{5}{6}x^3 - \frac{5}{6}x^4 + \cdots$$

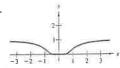
37.
$$\sum_{n=0}^{\infty} \frac{(-1)^{(n+1)} x^{2n+3}}{(2n+3)(n+1)}$$


39. 0.8415

41. 0.6931

47. 0.5312


49. 0.2010


53.
$$P_5(x) = x - 2x^3 + \frac{2}{3}x^5$$

 $\left[-\frac{3}{4}, \frac{3}{4}\right]$

55.
$$P_5(x) = (x-1) - \frac{1}{24}(x-1)^3 + \frac{1}{24}(x-1)^4 - \frac{71}{1920}(x-1)^5$$

$[\frac{1}{4}, 2]$

c.
$$\sum_{n=0}^{\infty} 0x^n = 0 \neq f(x)$$

Answers + + 1

Review Exercises for Chapter 8

- 1. $a_n = \frac{1}{n!}$
- 3. Converges to 0

- 7. Converges to 0
- 9. Converges to 0

11. a.	n	i i	2	3	4	5	6	7	8
111 41				#5306.04	\$5412.16	\$5520.40	\$5630.81	\$5743.43	\$5858,30
	A _n	\$5100.00	\$5202.00	\$5306.04	\$3412.10	\$3320.40	\$5050.01		

b. \$11,040.20

- 13. 1, 2.5, 4.75, 8.125, 13.3875
- 15. 0.5, 0.45833, 0.45972, 0.45970, 0.45970
- 17. 3 19. $\frac{1}{2}$
- 21. $\frac{1}{11}$ 23. $45\frac{1}{3}$ ft
- 25. \$5087.14
- 27. Diverges
- 29. Converges
- 31. Converges
- 33. Diverges

- 35. Diverges
- 37. Converges
- 39. a.

N	5	10	20	30	40
$\sum_{n=1}^{N} \frac{1}{n^p}$	1.4636	1.5498	1,5962	1.6122	1.6202
$\int_{N}^{\infty} \frac{1}{x''} dx$	0.2000	0.1000	0.0500	0.0333	0.0250

b.	N	5	10	20	30	40
	$\sum_{n=1}^{N'} \frac{1}{n^p}$	1.0367	1.0369	1.0369	1.0369	1.0369
	$\int_{N}^{\infty} \frac{1}{x^{p}} dx$	0.0004	0.0000	0.0000	0.0000	0.0000

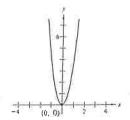
The series of part b converges more rapidly. This is evident from the integrals which give the remainders of the partial รนการ

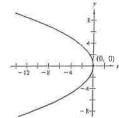
- 41. (-10, 10) 43. [1, 3] 45. Converges only at x = 2
- 47. $\frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n(n+1)/2}}{n!} \left(x \frac{3\pi}{4}\right)^n$ 49. $\sum_{n=0}^{\infty} \frac{(x \ln 3)^n}{n!}$
- 51. $-\sum_{n=0}^{\infty} (x-1)^n$ 53. $\sum_{n=0}^{\infty} \frac{2}{3} (\frac{x}{3})^n$

- 63. 0 65. 0.996
- 67. 0.560
- 69. a. 4 b. 6 c. 5 d. 10

CHAPTER 9

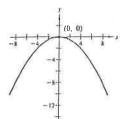
Section 9.1 (page 640)


- 3. a 5. d 1. e
- 7. Vertex: (0, 0)


Focus: $(0, \frac{1}{16})$

Directrix: $y = -\frac{1}{16}$

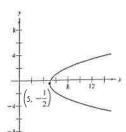
9. Vertex: (0, 0)



11. Vertex: (0, 0)

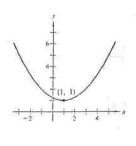
Focus: (0, -2)

Directrix: y = 2


13. Vertex: (1, -2)Focus: (1, -4)

Directrix: y = 0

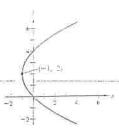
15. Vertex: $(5, -\frac{1}{2})$ Focus: $(\frac{11}{2}, -\frac{1}{2})$


Directrix: $x = \frac{9}{2}$

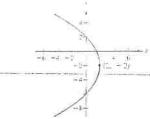
17. Vertex: (1, 1)

Focus: (1, 2)

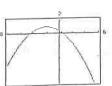
Directrix: y = 0



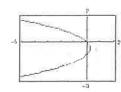
19. Vertex: (-1, 2)


Focus: (0, 2)

Directrix: x = -2



21. Vertex: (2, -2) Focus: (0, -2)Directrix: x = 4


23. Vertex: (-2, 1) Focus: $(-2, -\frac{1}{2})$

Directrix: $y = \frac{5}{2}$

25. Vertex: $(\frac{1}{4}, -\frac{1}{2})$ Focus: $(0, -\frac{1}{2})$

Directrix: $x = \frac{1}{2}$

- 27. $x^2 + 6y = 0$ 29. $y^2 4y + 8x 20 = 0$ 31. $x^2 + 24y + 96 = 0$ 33. $y^2 8x 4y + 4 = 0$ 35. $x^2 + y 4 = 0$ 37. $5x^2 14x 3y + 9 = 0$
- 39. $(x h)^2 = -8(y + 1)$ 41. $3x 2y^2 = 0$
- 43. $\frac{9}{4}$ ft 45. 4x y 8 = 0 47. $y = 2ax_0x ax_0^2$
- 49. Tangent lines: 2x + y 1 = 0

2x - 4y - 1 = 0

Point of intersection: $(\frac{1}{2}, 0)$

(on the directrix)